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Abstract

Background: There is growing evidence that individuals within populations can vary in both habitat use and
movement behavior, but it is still not clear how these two relate to each other. The aim of this study was to test if
and how individual bats in a Stunira lilium population differ in their movement activity and preferences for
landscape features in a correlated manner.

Methods: We collected data on movements of 27 individuals using radio telemetry. We fitted a heterogeneous-
space diffusion model to the movement data in order to evaluate signals of movement variation among
individuals.

Results: S. lilium individuals generally preferred open habitat with Solanum fruits, regularly switched between forest
and open areas, and showed high site fidelity. Movement variation among individuals could be summarized in four
movement syndromes: (1) average individuals, (2) forest specialists, (3) explorers which prefer Piper, and (4) open
area specialists which prefer Solanum and Cecropia.

Conclusions: Individual preferences for landscape features plus food resource and movement activity were
correlated, resulting in different movement syndromes. Individual variation in preferences for landscape elements
and food resources highlight the importance of incorporating explicitly the interaction between landscape structure
and individual heterogeneity in descriptions of animal movement.

Keywords: Movement behavior, Diffusion model, Individual specialization, Habitat fragmentation, Frugivory,
Phyllostomidae, Seed dispersal, Space use

Background
Movement is defined as the change in the spatial
location of an organism over time, and it has a crucial
role in determining the fates of individuals, and conse-
quently the structure and dynamics of populations, com-
munities and ecosystems [1]. Habitat fragmentation and
climate change have pervasive impacts on ecosystem

maintenance [2]. These anthropogenic processes can in-
fluence directly the movement behavior of individuals
and species. For example, a survey of a GPS-tracking
database of 803 individuals across 57 mammal species
found that movement activity in areas with high an-
thropogenic impact was on average less than half of that
in areas with low anthropogenic impact. Reduction in
movement may be attributable to an individual-
behavioral effect, where individuals alter their move-
ments relative to the anthropogenic impact, or a species
occurrence effect, where certain species that exhibit
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long-range movement simply do not occur in areas of
high anthropogenic impact. [3]. To better predict how
animals are likely to respond to environmental change, it
is therefore important to characterize movement pat-
terns and in particular to infer the underlying mecha-
nisms driving those patterns.
A growing number of studies has shown that individ-

uals differ substantially in resource use [4, 5] and move-
ment patterns [6–10] in many taxa. Interindividual
variation in resource use can be related to resource
availability and seasonally, thus intraspecific variation
level may not be fixed over time. For instance, the scar-
city of resources can lead to increased intraspecific com-
petition and increased interindividual variation [11],
[12]. Although many studies have demonstrated that in-
dividuals vary in movement patterns and habitat use, it
has remained less clear what mechanisms explain this
variation.
At a proximate level, features that describe movement

behavior (or movement syndromes) might potentially be
related to morphology (e.g., wing morphology; [13, 14]),
have a behavioral basis, or a combination of both. As-
suming they have a behavioral basis [15, 16] it is unclear
at this point if syndromes are learned (e.g., matrilineal
cultural transmission; [17]) or have a genetic basis.
Personality traits such as shyness-boldness, exploration-
avoidance, activity, sociability and aggressiveness may be
heritable, and may have important consequences for
several ecological and evolutionary processes at the
population (e.g. individual movement, gene flow) and
community levels (e.g., individual variation in some sets
of correlated personality and morphological traits may
be viewed as functional sub-categories in the
organization of communities; [18]).
In heterogeneous landscapes, where animals move

around to seek shelter and resources needed for their
reproduction and survival, landscape structure directly
affects the realized movement patterns [19]. For ex-
ample, in patchy landscapes, individuals typically move
fast and in a directed manner when moving among the
habitat patches, whereas their movements are slow and
tortuous when moving within the patches [20]. In het-
erogeneous landscapes, individual preferences for food
resources and habitat types can interact with landscape
features, generating complex movement patterns [21].
Inferring the underlying mechanisms behind such inter-
actions can be challenging, as it requires an appropriate
combination of relevant data and analytical tools [22]:
spatially explicit data on both animal movements and on
the availability of the relevant food resources, as well as
analytical tools that capture how variation in resource
availability influences individual-specific movement be-
havior and data on the animal’s state at different times
(disease, injuries, hunger-level).

The frugivore species Sturnira lilium (family Phyl-
lostomidae) is one of the most abundant and wide-
spread bats in the Atlantic Forest [23], exhibiting a
strong preference for fruits of the genus Solanum,
followed by Piper and to a smaller degree Cecropia,
Ficus and Vismia [24, 25]. In a previous study on a
population of S. lilium inhabiting a fragmented land-
scape of Brazilian savanna (Cerrado), we found that
different individual bats foraged more often in differ-
ent geographical locations, but whether individuals
have different habitat preferences or movement be-
havior remain to be tested [26].
Natural forest environments such as the Atlantic For-

est are increasingly impacted by agricultural, pasture and
human expansion (70 % of the Brazilian population live
along the Brazilian Atlantic coast; [27]), most of the
remaining forest being distributed in small-sized and
isolated fragments immersed in anthropogenic matrix
[28]. There is evidence for a fragmentation threshold for
bat richness, i.e. that the number of bat species strongly
depends on the forest cover (%) at the landscape level.
Furthermore, studies indicate that resource use corre-
lates with response to fragmentation: frugivorous species
are most tolerant to disturbance, being abundantly
present also at forest edges, secondary forests and for-
estry (i.e. commercial Eucalyptus plantations) with dense
understory with many chiropterochoric plants, such as
Cecropia, Piper and Solanum [29, 30]. This suggests that
frugivorous bats can to some extent adapt to environ-
mental changes, at least over the short term. Although S.
lilium can also utilize disturbed areas, it needs access to
areas of forest, as it needs tall trees for roosting and
understory vegetation for foraging [31, 32].
Here, we investigated how the movement patterns of

S. lilium individuals inhabiting a heterogeneous land-
scape respond to landscape features and food resources.
We hypothesized that there is correlation between statis-
tics that describe individual habitat preferences and
movement activity, so that the variation among individ-
uals can be summarized as low-dimensional behavioral
syndromes [33]. To test these hypotheses we acquired
mark-recapture data based on radio telemetry, and ana-
lyzed the data using the heterogeneous-space diffusion
model introduced by [34] and [35].

Materials and methods
Study area
The Vassununga State Park (Parque Estadual de Vassu-
nunga - PEV) is a state nature reserve with area of c.a.
2070 ha, divided into six disjoint fragments, all of which
are located in the city of Santa Rita do Passa Quatro,
state of São Paulo (21º 42’ 37” S, 47º 28’ 41” W). The
main vegetation types of the PEV is semi-deciduous for-
est (Atlantic Forest; 859 ha) and Cerrado (1,213 ha) –
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Brazilian savanna – surrounded by 2,776 ha of sugar
cane and 1,960 ha of natural vegetation composed
mainly by different physiognomy of Cerrado and riparian
forest (Fig. 1).

Bat sampling
Sturnira lilium bats were monitored during the wet sea-
son from September to November 2016. Bats were
caught using mist nets. For each captured bat, we mea-
sured its forearm with a caliper (0.01 mm precision) and
its weight with a portable dynamometer (0.1 g precision)
– this information contributed in species identification
in the field. Captured bats were identified by a combin-
ation of taxonomic keys [36, 37]. Twenty-seven adult in-
dividuals of S. lilium were selected for radio telemetry.
We classified the individuals as adults or juveniles
based on the degree of ossification of the epiphyses
of the phalanges of the wings [38], and selected only
adult individuals to avoid ontogenetic effects [39]. We
included both males (N = 23) and females (N = 4) to
be able to ask if there is a systematic variation be-
tween sex. In order to capture possible variability of
habitat preference and food preference within the
population, we sampled individuals both inside the
forest and in the open areas (Fig. 1).

Radio telemetry
We used the Axabixo equipment developed by Trapa-
camera ®. The Axabixo device is a terrestrial radio telem-
etry system with digital encoding that operates both at

the VHF frequency of 173,225 MHz and at the UHF fre-
quency of 433,920 MHz (http://www.trapacamera.com.
br/indexbixo.htm). The datalogger (i.e., the receiver) has
an omnidirectional antenna, with range about 300 m in
open areas, and it identifies the bat individual through a
transmitter-specific digital code. We utilized thirty-six
dataloggers (Fig. 1) that continuously recorded transmit-
ter signals, storing information on date, time, transmitter
identity and signal strength. Radio transmitters were at-
tached to the back of the bats using veterinary glue
(Vetbond). The weight of the transmitter was at most
5 % of the weight of the bat individual.

Landscape analysis
We mapped the landscape within a 4.5 km radius buffer
with the centroid located in the PEV center. We made
this choice based on our previous unpublished study on
S. lilium, in which we recorded a maximum flight dis-
tance of 6 km. The mapping was made by manual
digitalization and visual interpretation using high reso-
lution satellite images (Open Layers Plugin Google Satel-
lite at Quantum Gis 1.8) at the 1:5,000 scale. The
following cover classes were mapped: semi-deciduous
forest, open natural vegetation, sugar cane, agriculture,
forestry, pasture, rural facilities and water. However, for
the diffusion model, we reclassified the landscape into
classes that we expected to be relevant for modelling bat
movements: forest (18 % within the 4.5 km radius buffer;
consisting of the PEV), open area (31 %; consisting of re-
generation areas and natural open physiognomies such
as gramineous-woody savanna, with a predominance of

Fig. 1 Study site: Vassununga State Park and its surroundings, where movements of Sturnira lilium bats were recorded in São Paulo state, Brazil
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pioneer plants and shrubs) and matrix (51 %; mainly
sugarcane, water and highways).
We computed a set of eight landscape attributes for

each location of dataloggers: the proportions of forest
cover (FC), open area cover (OA) and matrix cover
(MA) in a circular buffer with 200 m radius, the spatial
heterogeneity (HE) of the buffer calculated by the Shan-
non’s landscape diversity index; distance of the datalog-
ger to the nearest forest fragment (NN), and estimated
numbers of ripe fruits of trees in the genera Piper (PI),
Solanum (SO) and Cecropia (CE). These trees provide
the main resources consumed by S. lilium [24, 25]. We
chose a 200 m radius buffer because it was the max-
imum signal range of the transmitters in forest areas.
The landscape was mapped using Quantum Gis 1.8
(QGIS Development Team) and ArcGis 10.5. The land-
scape metrics were calculated on the extension V-Late.

Fruit availability
For estimating the number of fruits, we also used a
200 m radius buffer around each datalogger. Inside each
buffer, we first estimated the number of fruits per
branch as the average count over 10 individual trees.
The trees were selected randomly from the point where
the datalogger was located. Second, we defined four per-
pendicular transects and counted the number of
branches of each plant species along each transect. Fi-
nally, we multiplied the number of branches by the aver-
age number of fruits per branch.

Fitting the heterogeneous-space diffusion model
We fitted to the bat detection data the heterogeneous-
space diffusion model introduced by [34] and [40], and
extended to account for variation among species by [35].
In this study, we consider a single species, but utilize the
structure of the Joint Species Movement Modeling
(JSMM) framework [35] to model variation among indi-
viduals. The diffusion model (which is technically a par-
tial differential equation, see [34]) accounts for habitat-
specific variation in movement and mortality rates, and
for habitat selection at edges between habitat types.
Prior to the analyses, we triangulated the landscape (as
needed to fit the diffusion model to data; [34]) classified
into the three habitat types: forests (h ¼ 1 ), matrix (h
¼ 2), and open areas (h ¼ 3) – this step was done using
the software Mapper [40]. The movement model con-
tains seven parameters to be estimated for each individ-
ual i : (a) three habitat-specific movement rates (the
diffusion parameters Dh

i for each habitat type h); (b) two

habitat preference parameters khi (relative preferences to
open areas and to matrix, normalized to 1 for forests);
(c) mortality parameter mi (assumed to be the same for
all habitat types) and (d) detection probability qi (as-

sumed to be the same for all habitat types). We note that
in the present study the mortality parameters are more
likely to represent the death of the battery of the track-
ing equipment rather than the death of the individual
bat.
The detection probability qi measures the probability

of observing the individual by a datalogger conditional
on the individual being within the detection area [34].
We defined for each datalogger a detection area based
on a field experiment where we examined from which
locations the datalogger was able to detect the tracking
equipment. We then doubled the sizes of these areas to
account for small-scale bat movements that may bring
the individual to the detection area during one-time step
when the individual is nearby it. We note that the detec-
tion probabilities (qiÞ are likely to be similar for each in-
dividual, even if the devices may somewhat vary in their
technical quality. We chose to include variation among
individuals in detection probability partially because it
allowed us to utilize the modelling framework of [40].
The np ¼ 7 individual-specific movement parameters

can be described by the vector

Θi∙ ¼ ðlogðD1
i Þ logðD2

i Þ logðD3
i Þ logðk2i Þ logðk3i Þ logðmiÞ logitðqiÞÞ

ð1Þ

We computed the likelihood p yijΘi�ð Þ for observing
the movement data yi using the finite-element scheme
to solve the time-evolution of the probability density for
the individuals’ location, as described by [34] and imple-
mented for the case of variation among species (here, ni
individuals) by the JSMM [35]. The data are in
continuous-time, but the implementation of the diffu-
sion model requires one to define discrete time intervals
at which the detections are attempted, which we set to
12 h intervals.
The JSMM estimates species- and community-level

movement parameters as a function of species traits and
their phylogenetic relationships. Here, we model the
movement activity of bats dependent on individuals’
weight and sex. We combine the individual-specific pa-
rameters into the ni � np matrix Θ, and then model the
ninp � 1 vector θ ¼ vec Θð Þ using a multivariate normal
distribution

θ � N m;Σ � Inið Þ ð2Þ

Here the np � np variance-covariance matrix Σ models
the individual-specific deviations from the expectations
based on the traits, Ini is the ni � ni identity matrix, and
� is the Kronecker (outer) product. The vector m ¼
vec Mð Þ is the vectorized version of the ni � np matrix
M, with the expected movement parameters based on
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individuals’ sex, and weight. We model the matrix ele-
ments mip for each individual i and parameter p as

mip ¼
X

a
tiaζap ð3Þ

where a is the index for na ¼ 3 traits (sex and weight, as
well as intercept modelling the overall mean), and tia is
the trait a for bat i . The parameter ζap measures the

effect of traits (sex and weight) on parameter p. We log-
transformed the weight values, and converted sex
categories into a binary variable (1 for males and 0 for
females).
We ran a Monte Carlo Markov Chain (MCMC) algo-

rithm to estimate the parameters, first for 50,000 itera-
tions, during which we adapted the proposal
distributions of Θ to achieve optimal mixing, and then
sampled the posteriors by running the MCMC algorithm
further by 350,000 iterations. We replicated the MCMC
sampling for 3 independent chains, and assessed the
convergence of the MCMC algorithm using the
Gelman-Rubin convergence statistic [41] with the pack-
age CODA [42].

Deriving ecological inference from the diffusion model
To assess model fit, we simulated movement tracks,
using individual specific parameter values sampled from
the posterior distribution. To make real and simulated
data as comparable as possible, we released each virtual
bat in the location where a real bat was first observed,
and we assumed the same spatial distribution of datalog-
gers as was used in the actual field study. We compared
1000 replicates of simulated data to observed data with
sixteen statistics (S1-S16) that we considered relevant in-
dicators of movement behavior. The statistics S1-S8 are
the mean values of the eight landscape indices describe
above (FC, OA, MA, HE, NN, PI, SO and CE), averaged
over the locations where the individual was observed.
The remaining statistics are the fraction of observa-
tions in forest (S9) and open habitats (S10), the pro-
portion of consecutive observations in which the bat
changed from one habitat type to another habitat type
(S11), the mean distance between consecutive obser-
vations (S12), the distance between the first and the
last observation (S13), the number of distinct re-
ceivers in which the bat was observed (S14), the pro-
portion of observations in the receiver from which
there were most observations (S15), and the propor-
tion of time-steps from first to last observation in
which the bat was detected (S16, Table 1). To valid-
ate the structural assumptions of the diffusion model,
we averaged the statistics S1-S16 over the individuals
and compared the statistics for real data to posterior
mean and 95 % credible intervals [CI] derived from
the simulations.

We assessed the presence of characteristic move-
ment syndromes by examining if the variation among
individuals showed correlated patterns in their move-
ment characteristics. As movement characteristics, we
used the posterior means of the individual-specific pa-
rameters of the movement model (diffusion rates and
habitat preferences) and the residual statistics S1-S16,
i.e. the difference between observation and the poster-
ior mean prediction by the diffusion model. The rea-
son for including the residual rather than the raw
statistics was that they measure deviations of the
movement characteristics S1-S16 from the null ex-
pectation based on the estimated movement parame-
ters at the population scale. To make statistics with
different units comparable, we normalized them to
zero mean and unit variance over the individuals. We
performed a Principal Component Analysis (PCA) to
summarize the information contained in the continu-
ous multivariate movement data considering the 23
residual statistics as the variables, and a k-means
clustering to split the individuals into a set of 4 clus-
ters. The optimal number of clusters (4) was deter-
mined by the Average Silhouette Method, which
determines how well each object lies within its cluster
[43]. We performed the PCA analysis using the
prcomp function and the k-means analysis in R [44].
We used the factoextra R package to help in the in-
terpretation and visualization of PCA and clustering
analysis.

Table 1 Statistics and description of the movement of Sturnira
lilium bats inhabiting a heterogeneous landscape in Brazil

Statistic description

S1 Mean forest cover

S2 Mean open area cover

S3 Mean matrix cover

S4 Mean heterogeneity

S5 Mean distance to nearest forest

S6 Mean number of Piper fruits

S7 Mean number of Solanum fruits

S8 Mean number of Cecropia fruits

S9 Proportion of observations in forest

S10 Proportion of observations in open area

S11 Proportion of habitat change

S12 Mean distance between observations

S13 Distance from first to last observation

S14 Number of distinct receivers

S15 Proportion in most frequent receiver

S16 Proportion of time-steps within observations
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Results
We detected 7607 records (mean ± standard deviation =
271.7 ± 411.9, n = 27) and the mean number of days be-
tween first and last record per individual was 6 (+-6, n =
27). At the species level, habitat preference order of the
bats was greater for open areas than for forest or matrix,
bats preferred locations with high availability of Solanum
fruits and bats changed between forest and open area
habitats frequently. At the individual level, we detected
four classes of individuals: (1) average individuals, (2)
forest specialists, (3) explorers which prefer Piper, and
(4) open area specialists which prefer Solanum and Ce-
cropia (Fig. 2).

Parameter estimates
The posterior means of the diffusion model parameters
for the studied population are shown in Table 2 (see all
the parameter estimates and the convergence diagnostics
in Supporting Table S5). The model indicates that the
habitat preference order of the bats was greater for open

areas than for forest or matrix, and that movement rates
were not related to habitat preferences so that the move-
ment had similar diffusion rates in all habitats. The
mean lifetime of bats (or batteries), which can be com-
puted as the reciprocal of the mortality rate, was ca. 13
days. The estimated detection probability was very close
to one, indicating that bats that were close to the vicinity
of a datalogger were very likely to be detected by the
equipment.

Structural model validation
The simulated data and the real data matched well in
terms of the statistics S1-S6 and S8-S10 describing the
distribution of the bats with respect to habitat types
(Fig. 3). This is to be expected, as the diffusion model
accounted explicitly for the habitat composition of the
landscape. Deviations between simulated and observed
data were minor also for statistics that were not directly
fitted in the diffusion model. For example, the simulated
data slightly underestimated the amount of Solanum

Fig. 2 A comparison of population-level movement statistics between real and simulated data. The black lines are the statistics mean values for
the simulated data, and the red dots are the statistic values for the real data. The shadowed areas show the distribution of the summary of
1000 simulations
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fruits in the locations where the bats visited (S7), mean-
ing that the bats preferred locations with high availability
of fruits more than predicted by the diffusion model that
does not explicitly account for fruit availability. As a sec-
ond example, bats changed between habitat types more
frequently than proposed by the simulated data (S11),
indicating that they alternate between forest and open
area habitats more often than predicted by the diffusion
model that is based on a random walk assumption. As a
third example, simulated data somewhat underestimated
the proportion of times the bats were detected (S16),
suggesting that the delineated detection area was too
small for modelling the detection process of bats at this
time scale.

Individual variation in movement behavior
The sex and the weight of the bats explained less
than 10 % of variation in posterior movement param-
eters, except for the mortality rate (Fig. 4). Despite
the overall little amount of variation explained by
bats’ traits, we found evidence that larger bats have
larger diffusion rates in open areas, and that male
bats have a higher mortality rate (probably related to
battery life). For all other movement parameters,
weight and sex explained only little of the variation
among individuals (Fig. 4).
We identified four main movement syndromes ac-

cording to a cluster analysis using the correlation
among the statistics and a PCA analysis (Fig. 2;
Table 3, Additional file S1 and S4. However, it is im-
portant to note that the variation between individuals
can be gradual rather than very well-defined clusters.
We used a k-mean analysis to divided bats into four
classes: (1) average individuals, (2) forest specialists,
(3) explorers which prefer Piper, and (4) open area
specialists which prefer Solanum and Cecropia
(Table 3; Fig. 2). Figures with the movement of each
individual can be seen in Additional file S2, a

synthesis of the data obtained from each individual is
provided in Additional file S3.

Discussion
Our results indicate that individuals in a population of a
common frugivorous bat species vary in how their
movement depends on landscape elements. Importantly,
we show that variation in different aspects of movement
behavior can be summarized in terms of behavioral
movement syndromes. Kerches-Rogeri et al. (2020) dem-
onstrated that different individual bats foraged more
often in different geographical locations regardless of
habitat type. In our present study, we go one step further
and demonstrate that individuals have different habitat
preferences and movement characteristics.
The fact that we found a weak effect of sex on move-

ment can be related to the small sample size of females.
However, we consider that this deserves future studies
because the shape of the wings may be different between
the sexes because females carry extra weight during
pregnancy and wing shape must keep aerodynamics of
flight [45], but we do not know whether movement and
habitat selection are related to differences in wing
morphology.
Regarding weight, larger bats tended to have high

movement rate in open areas. A similar trend of body
size effect in space use can be found in interspecific
studies at other taxa [3, 46, 47], but there are only indi-
cations of this trend among bats (e.g. [48, 49]). Our re-
sults thus suggest that also intraspecific variation in
body size is relevant for understanding how bats move
within a landscape.
Some studies indicate that S. lilium is preferentially

associated with secondary forest (e.g. [30], [50]),
whereas other studies indicate an association with
more mature forests [51]. Our results may help to
elucidate these descriptions, by showing that a single
population may contain individuals with preferences

Table 2 The posterior means and 95 % credible intervals of the diffusion model parameters, for the studied bat population. The

habitat preference parameters khare unitless. The unit of diffusion Dh is m2/day. The unit of mortality m is 1/day

Parameter Mean 0.025 quantile 0.975 quantile

Preference for forests (k1) 1.00 1.00 1.00

Preference for matrices (k2) 1.13 0.26 3.76

Preference for open areas (k3) 101.17 15.00 226.40

Diffusion in forest (D1) 337,419.65 180,033.24 691,128.32

Diffusion in matrix (D2) 332,964.35 135,208.25 757,394.96

Diffusion in open areas (D3) 200,588.34 79,495.71 642,622.82

Mortality (m) 0.15 0.05 0.67

Detection probability (q) 0.86 0.68 0.96
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for different habitat types. Because the degree of
inter-individual variation may vary among populations
[4], the presence of syndromes may be population-
specific rather than universal, since each population
faces different environments and conditions, e.g. re-
source availability and predation pressure [52]. It is
possible that some populations are behaviorally
monomorphic (either specializing in open or forest
habitats) and others (e.g., the population studied here)

are polymorphic, which would help to explain these
apparent conflicting findings.
Intraspecific variation can affect important processes

to the survival of the species. The niche overlap among
individuals can increase or decrease competition, since
variation between individuals of the same species can
decrease competition between conspecifics, but increase
competition with other species [11]. In another scenario,
the variation between individuals can also be a relief for

Fig. 3 Individual-specific parameters estimates. The dots show the posterior mean for each male (blue) and female bat (red). The lines show the
expected posterior means based on bat weight and sex – females (red) and males (blue). The posterior probability of weight having a positive
effect on the movement parameter is denoted by pw. The posterior probability of males having a larger movement parameter than females is
denoted by ps. The proportion of variation of each movement parameter explained by weight and sex are denoted by r²w and r²s, respectively.
We show for each movement parameter the amount of variation not explained by bat weight and sex (r²i)
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inter-specific competition, since even if the overlap be-
tween the niche of other species increases, this impact
can be reduced, because only a subgroup of individuals
in each species are affected.
Intraspecific variation can also be important for eco-

system processes performed by the species. Because S.
lilium is an important seed disperser and a “fragment
connector” for many plant species in the Neotropics [53,
54], the presence of movement syndromes may have im-
plications for this ecological service. The importance of
variation within a population of dispersers may be re-
lated to Jensen`s inequality mechanism, in which when
an ecological interaction depends nonlinearly on a spe-
cific characteristic, the variation around the mean of that
characteristic can change the average strength the inter-
action [11, 55]. If a population has different subsets of
individuals with respect to the partition of landscape
use, it may mean that the real connectivity of the land-
scape by the bats may be different from the connectivity
provided by a population formed by average individuals.
Individuals with different syndromes are likely to

interact with different plant species and disperse seeds
to different areas with different efficiencies, suggesting
that they might vary in their quality as dispersers [55,
56]. Individuals using forest areas, for instance, are likely
to be effective dispersers of Piper seeds, whereas individ-
uals using open areas are likely to be effective dispersers
of Solanum seeds. Understanding how inter-individual
variation in movement patterns in S. lilium affects seed

dispersal and the dynamics of the plants they disperse
should be addressed in future research.
From a conservation biology point of view, the pres-

ence of movement syndromes suggests that individuals
are likely to respond differently to habitat change, which
may be good news, since the adaptation capacity of these
bats to different natural and anthropogenic habitat may
guarantee their maintenance within human-modified
landscapes. Individuals specialized in open habitats
might benefit from forest fragmentation, whereas those
specialized in forest habitats should be negatively im-
pacted. By the same token, restoration programs aiming
at recovering only dense forest habitats may be advanta-
geous for only a subset of the population. Besides, if in-
dividual specialization is correlated with the number of
coexisting species (as predicted by the niche variation
hypothesis), then protecting a highly variable population
of a species may require protecting a habitat of little di-
versity, while reserves designed to include high interspe-
cific biodiversity can minimize intraspecific diversity
(52). Therefore, conservation efforts may benefit from
considering how changes in habitat may impact individ-
uals differently in a population.
It is important to note that our study describes move-

ment for a short period of time (with an average battery
life of 13 days), so we do not know whether bats consist-
ently fall into a single behavioral syndrome or they
switch back and forth, just as we do not know whether
this is a consistent individual-level trait or is it subject to

Fig. 4 Results of a k-mean analysis aimed at detecting behavioral syndromes of Sturnira lilium. Numbers represent individuals. Each color
represents the syndrome that each individual belongs, determined by k-means analysis. The largest axis of variation PC1 (25 % of statistics
variance) separates mainly habitat use, increasing PC1 meaning increasing use of forests, and PC2 (17.3 %) separates mainly long-term movement
activity, increasing PC2 meaning exploratory (as compared to stationary) behavior
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unmeasured temporal factors. One of the causes of indi-
vidual specialization is intraspecific competition, which
is related to the availability of resources, therefore, the
same population may exhibit strong or weak niche over-
lap between individuals according to the availability of
resources. Thus, it would be plausible to assume that the
organization of bat individuals in groups is subject to
seasonal variation related to the natural seasonal avail-
ability of resources.

Conclusions
Our results indicate that individuals may vary consist-
ently in their movement patterns, which can be consid-
ered movement syndromes. Individual preferences for
elements of the landscape highlight the importance of
incorporating explicitly the landscape to descriptions of
animal movement. An important step in future research
is to understand more mechanistically the eco-
evolutionary processes driving such variation, and to ac-
count for movement syndromes in conservation efforts,
e.g. related to the consequences of habitat fragmentation
on seed dispersal.
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