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Abstract 

Purpose Trailing‑edge populations at the low‑latitude, receding edge of a shifting range face high extinction risk 
from climate change unless they are able to track optimal environmental conditions through dispersal.

Methods We fit dispersal models to the locations of 3165 individually‑marked black‑throated blue warblers 
(Setophaga caerulescens) in the southern Appalachian Mountains in North Carolina, USA from 2002 to 2023. Black‑
throated blue warbler breeding abundance in this population has remained relatively stable at colder and wetter 
areas at higher elevations but has declined at warmer and drier areas at lower elevations.

Results Median dispersal distance of young warblers was 917 m (range 23–3200 m), and dispersal tended to be 
directed away from warm and dry locations. In contrast, adults exhibited strong site fidelity between breeding 
seasons and rarely dispersed more than 100 m (range 10–1300 m). Consequently, adult dispersal kernels were much 
more compact and symmetric than natal dispersal kernels, suggesting adult dispersal is unlikely a driving force 
of declines in this population.

Conclusion Our findings suggest that directional natal dispersal may mitigate fitness costs for trailing‑edge 
populations by allowing individuals to track changing climate and avoid warming conditions at warm‑edge range 
boundaries.

Keywords Climate gradient, Hierarchical model, Migration, Movement model, Natal dispersal, Neotropical migrants, 
Trailing‑edge

Background
Theoretical models of spatial population dynamics sug-
gest that the effects of climate change on population 
viability and gene flow will depend on dispersal capac-
ity [7, 36, 61]. Species that cannot track optimal climatic 
conditions via dispersal are likely to experience increased 
extinction risk from reductions in survival and reproduc-
tion [28, 47, 55]. However, studying dispersal in natural 
populations is notoriously difficult, especially for mobile 
species, and few empirical studies have investigated the 
degree to which dispersal is directed towards optimal cli-
mate conditions [51, 65].
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Populations at the trailing edge of a shifting range 
provide many opportunities for investigating dispersal 
responses to climate change. Trailing-edge populations 
are often near their physiological thresholds [15, 23] and 
are therefore likely to be sensitive to novel abiotic con-
ditions [6, 47, 60]. Suitable habitat is often more frag-
mented at the trailing edge than at the core of the range, 
constraining the available area for dispersal [20, 23, 24]. 
As a result, dispersal capacity is especially critical for 
trailing-edge populations facing climate-based extinction 
[27].

Dispersal capacity can vary with age, sex and other 
individual traits [22, 43]. Natal dispersal is typically 
greater than adult dispersal within vertebrates [17, 22, 
50], suggesting that natal dispersal could be a key driver 
of climate-induced range shifts [10, 22, 49]. For adults, 
site fidelity offers numerous advantages such as increased 
mating success [25] and familiarity with available food 
resources [5, 21], whereas dispersal represents a risky 
trade-off (Fleischer et  al, [16]; Bonte et  al,[4], but see 
[45]). For young individuals, dispersal serves as a mecha-
nism to seek higher-quality habitat [4, 9], avoid competi-
tion or inbreeding with relatives [9, 35], escape parasites 
[62], and increase mate availability [8, 26].

Migratory species face unique challenges from climate 
change, which can impact phenology, physiology, and 
demography at non-breeding and breeding sites through-
out the annual cycle [46, 48, 56, 69, 71]. Studying these 
effects is complicated because changes in either survival 
or breeding site selection can make it difficult to observe 
dispersal events [44, 70]. Long-term studies of marked 
individuals occurring over strong climate gradients pro-
vide one of the few options for advancing knowledge of 
climate change impacts on demography and dispersal 
[11, 29].

We used 21 years of mark-recapture data from a trail-
ing-edge population of black-throated blue warblers 
(Setophaga caerulescens) to test the hypothesis that a 
key mechanism underlying climate-induced range shifts 
of trailing-edge populations is directional (non-random) 
dispersal. For black-throated blue warblers, cooler and 
wetter conditions, which are positively correlated with 
elevation, provide the best breeding habitat [31]. At the 
trailing edge of the range, abundance has remained rel-
atively stable at colder and wetter areas at higher eleva-
tions but populations have become extirpated at the 
warmer, drier sites at lower elevations [41, 57]. To eval-
uate the hypothesis that directional dispersal explains 
recent local range shifts, we tested the prediction that 
birds would be more likely to disperse to colder and 
wetter conditions in the surrounding landscape than to 
warmer and drier conditions. For young birds, disper-
sal decisions are likely to be influenced by the available 

environmental conditions relative to the hatch location. 
At the coldest and wettest sites, there are no available 
locations within the study area with better conditions. In 
contrast, a bird hatched at a lower elevation in warmer 
and drier conditions could have many available locations 
in the study area with better conditions. We further pre-
dicted that natal dispersal would be greater than adult 
dispersal because adults are known to exhibit high site 
fidelity [9].

Methods
The black-throated blue warbler is a Neotropical migra-
tory bird that winters in the Caribbean and Central 
America and breeds in the eastern United States and 
southeastern Canada. The southernmost breeding popu-
lations occur in the southern Appalachian Mountains. 
Black-throated blue warblers have been heavily studied in 
the core of their breeding range [9, 30], but less is known 
about trailing-edge populations [12].

In the core of the range, adult black-throated blue war-
blers exhibit strong site fidelity during the breeding sea-
son, and dispersal is influenced by both habitat structure 
and sex [9, 64]. Adult black-throated blue warblers rarely 
disperse from their chosen patch except in response to 
habitat disturbance [2, 3]. As with most Neotropical 
migratory songbirds, little is known about natal disper-
sal, but natal dispersal distances >1 km are thought to be 
common in the core of the range [31].

Field methods
From 2002 to 2022, we monitored black-throated blue 
warblers in the Nantahala National Forest in western 
North Carolina (35.1°N, 83.4°W), at the trailing edge of 
the range (Fig. 1). The southern Appalachian Mountains 
are characterized by steep topography ranging from 
500 to 1600  m above sea level. Historically, both east-
ern hemlock (Tsuga canadensis) and American Chestnut 
(Castanea dentata) were common, especially in riparian 
areas [14]. The study site is now composed of mixed oaks 
(Quercus spp.), tulip poplar (Liriodendron tulipifera), 
hickories (Carya spp.), and maples (Acer spp.). Yellow 
birch (Betula alleghaniensis), black birch (Betula lenta), 
black cherry (Prunus serotina) and black gum (Nyssa syl-
vatica) are also common throughout the area. Understory 
foliage is dominated by rhododendron (Rhododendron 
maximum) and mountain laurel (Kalmia latifolia), with 
some dry sites lacking any shrub or mid-canopy layer. 
Temperature and precipitation are highly correlated with 
elevation. The coldest and wettest sites are found at the 
highest elevations. Mean annual precipitation increases 
from 1868  mm  year−1 at 600  ms to 2514  mm  year−1 at 
1400  ms above sea level. Mean May air temperatures 
decrease from 17.5 °C at the lowest elevations to 13.9 °C 
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at the highest elevations [13]. Caterpillar biomass (the 
primary food source for black-throated blue warblers 
during the breeding season [54]) is positively correlated 
with cooler climates at these sites [40].

We surveyed 19 study plots (each plot covering a ∼ 12 
ha area) ranging in elevation from 600  m to 1500  m 
above sea level (Fig. 1). The study began with one lower 
elevation intensively-surveyed (henceforth ‘intensive’) 
plot in 2002, with a second higher elevation intensive 
plot added in 2003 and 17 auxiliary plots added between 
2014 and 2018. More details on the starting date for each 
plot can be found in the data archive associated with this 
manuscript. Each intensive plot was surveyed approxi-
mately every 2 days during the breeding season to map 

black-throated blue warbler territories, assess breeding 
density, find nests, and monitor nesting success. Once 
found, nests were monitored until failure or successful 
fledging of chicks. All surviving nestlings were banded 
with USGS aluminum leg bands 6 days after hatching. 
Nestlings were not sexed during initial banding.

We attempted to capture, sex, and age all adult black-
throated blue warblers on our intensive plots every year 
through targeted and constant-effort mist-netting. At 
the 17 auxiliary plots, we performed constant effort 
mist-netting for 4 days during the breeding season to 
band birds and monitor nests found during banding 
operations. In some years, nest searching and re-sight-
ing surveys were also performed at some of these plots. 

Fig. 1 Locations of black‑throated blue warblers banded as nestlings in the Nantahala National Forest, North Carolina, USA. From 2002 to 2022, 
2072 nestling black‑throated blue warblers were banded and released, of which 19 were recaptured as second‑year birds. White squares represent 
the total number of nestlings banded in each grid cell. Blue boxes show the number of nestlings that were recaptured as second‑year birds 
in that grid cell. Nestlings recaptured as after‑second‑year birds are not included in the figure. Some study plots span more than one grid cell. The 
background color depicts climate, represented as the dominant principal component of precipitation and temperature normals. Contour lines 
depict elevation in meters.The inset shows the breeding range of the black‑throated blue warbler in green, with a star marking the study site 
location
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Nest searching on these auxiliary plots was not exhaus-
tive. All captured adult individuals were banded with a 
U.S. Geological Survey (USGS) aluminum leg band and 
a unique combination of colored leg-bands.

We used PRISM’s 30-year climate normals (1991–
2010) [13] at an 800  m resolution to describe average 
May precipitation and temperature across our study 
area. After standardization, we conducted a princi-
pal component analysis [32] to create a single variable 
that represented the dominant climate gradient of the 
region. Higher values of this variable represented hot-
ter and drier locations, with lower values representing 
wetter and colder sites.

Modeling framework
We analyzed dispersal events of individuals captured 
between 2002 and 2022. We used a discrete-time, dis-
crete-space extension of the Cormack–Jolly–Seber 
(CJS) [38, 58] model to draw inferences about dispersal. 
This hierarchical model has a state process describing 
the dispersal and survival of all individuals in the sam-
ple, not just the ones that were detected in subsequent 
years. The state process is treated as partially observed, 
with an observation process that accounts for imperfect 
detection and the fact that dispersal events can only 
be observed at sampling locations. The observation 
process is critical to avoid selection bias. Specifically, 
ignoring birds that were not recaptured would equate 
to conditioning on birds that survived and dispersed 
to our sampling locations. Since sampling was not uni-
form throughout the study area, this would result in 
bias, as it would incorrectly suggest that birds prefer 
to disperse to our study plots. By modeling all birds, 
and acknowledging that some birds died and moved to 
areas that we did not sample, we avoided this form of 
selection bias.

We divided the study area into N = 320 grid cells 
(Fig. 1) with each cell covering a 800 × 800 m area and 
snapped all locations to grid cell centers. Following the 
framework of Schick et al. [59], we defined zi,t as a vec-
tor of length N, indicating the location of individual i in 
year t. In other words, the vector zi,t contains zeros and 
a single one corresponding to the location where the bird 
occurred in year t. The location vector zi,t was modeled 
as an outcome of a multinomial distribution, conditional 
on the individual’s location and age (nestling or adult), a, 
in the previous year.

The probability θi,k ,t,a of dispersing to location k, condi-
tional on surviving and returning to the study area, is cal-
culated by normalizing the dispersal kernel:

zi,t,a|zi,t−1,a−1 ∼ Multinom(1, θ i,t,a)

The dispersal kernel describes the relative probability 
that individual i with age a selects location k in year t 
given the available climate conditions and the distances 
from the origin at location j.

The variable Xi,k is the distance in kilometers between the 
individual’s location at time t − 1 and location k, and ck is 
the climate at location k. The a subscripts on the effects 
of distance and climate indicate that the effects were age-
specific, which is equivalent to modeling an interaction 
between age and the two covariates. For black-throated 
blue warblers, we modeled movements between years 
as dependent on the precipitation and temperature at 
location k, combined into a single standardized climate 
variable.

This model acknowledges that the shape of the dispersal 
kernel can depend on location because climate varies spa-
tially. The parameter β1 is strictly positive, and it describes 
the effect of distance on dispersal. Large values of β1 indi-
cate short dispersal distances, small values describe a dif-
fuse dispersal kernel. If there is no effect of climate ( β2 = 
0), then the dispersal kernel is isotropic and an individual 
is predicted to follow a simple random walk. On the other 
hand, as β2 decreases, the dispersal kernel will be skewed 
away from regions with greater values of c (warmer and 
drier conditions). In these cases, the model also acknowl-
edges that an individual is less likely to disperse far if it 
was born in a location with optimal climate conditions. 
In other words, the distance and directionality of disper-
sal will depend on the available climate conditions in the 
surrounding landscape (e.g. all other grid cells in the study 
area).

To account for the uneven spatial and temporal distri-
bution of survey effort across our study area, we modeled 
the detection of an individual, yi,k ,t , as a Bernoulli outcome 
with detection probability pk . To differentiate between 
intensive and auxiliary plots, we assumed detection was 
dependent on plot type. To account for variation in effort, 
we included a binary variable, sk ,t , that represented if grid 
cell k was sampled in year t.

For p1 , we used a Uniform(0.8, 1.0) prior, as we expected 
detection was close to 1 in these plots. For p2 , we used 
a LogitNormal (0, 1.78), which approximated a uniform 
distribution on the logit scale. We used Normal (0, 1) pri-
ors for β1 and β2.

θi,k ,t,a =

hi,k ,t,a
N
k ′=1 hi,k ′,t,a

hi,k ,t,a = e−β1,aXi,k+β2,ack

pk =

{

p1sk ,t if intensive plot
p2sk ,t if auxiliary plot
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Modeling all birds in the sample and not just the ones 
that were recaptured required that we account for sur-
vival. However, as in most mark-recapture studies, we 
cannot distinguish between permanent emigration out 
of the study area (defined here by the spatial region 
shown in Fig.  1) and mortality. We therefore modeled 
“apparent survival” ( φa ) for each age group a, defined as 
the probability of surviving and remaining in the study 
area. We conditioned detection on apparent survival 
using a discrete-time Bernoulli model,

where wi,t indicates if individual i was alive and in the 
study area in year t. We used a Uniform (0, 0.3) prior 
for nestlings survival and a Beta(5,2) prior for survival 
of adults to loosely restrict survival estimates to ranges 
reported in the literature.

We analyzed data from natal and adult birds together. 
Because we were unable to distinguish long-distance 
dispersal (i.e., dispersal beyond our study area) from 
mortality, our dispersal model was focused on short-
distance dispersal. We therefore put priors on the dis-
persal distance parameter β1,a to constrain inference 
to dispersal within the study area. For this, we used an 
exponential distribution, β1,a ∼ Exponential(0.1) , which 

wi,t ∼ Bern(φawi,t−1)

yi,k ,t ∼ Bern(pkwi,t)

puts < 0.05 prior probability on dispersal distances 
> 30 km.

Analysis was performed in JAGS via the ‘rjags’ package 
in Program R [52, 53]. Convergence was assessed using 
visual inspection of three chains and the Gelman-Rubin 
statistic (r-hat <1.1) [18]. Each Markov chain was run for 
15,000 iterations, resulting in 45,000 posterior samples.

Results
We banded 2072 nestling black-throated blue warblers 
from 2002 to 2022. Of the nestlings banded, 24 were re-
captured in the study area (1.2% return rate)—19 as first-
time breeders (second-year birds, SYs) and 5 as adults 
(after-second-year birds, ASYs). Recaptured birds were 
male biased, with 16 males and 8 females recaptured. 
The median distance between nest location and first-year 
location was 917 m (range 23–3200 m) (Fig. 2). Median 
dispersal distance was farther for females (1092 m, range 
356–3200  m) than males (812  m, range 235–2800  m). 
The majority (18 of 24) of the recaptured nestlings were 
born at the coldest and wettest sites above 1300  m ele-
vation, where black-throated blue warbler density was 
highest. Two of the recaptured nestlings were born in 
the same nest, but established first-year territories 800 m 
apart. Yearly apparent survival, conditional on returning 
to the study area, was estimated to be 10% (6–14%) for 
yearlings.

Fig. 2 Dispersal events for black‑throated blue warblers between consecutive years for A 23 nestlings and B 190 adult birds in the Nantahala 
National Forest, North Carolina, USA from 2002 to 2022. Arrows depict the number of individuals that dispersed between locations. Red 
arrows and numbers in A shows nestlings encountered more than one year after hatching. The background color depicts climate, represented 
as the dominant principal component of precipitation and temperature normals
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We banded 1093 adult black-throated blue warblers 
(451 females, 632 males, and 10 with sex not recorded). 
We recaptured 190 individuals (114 males, 76 females) 
in subsequent years (17.4% return rate). Most recaptured 
birds were observed in two years, which were not always 
consecutive. One individual was observed in seven 
years. The median distance between territories in con-
secutive years was 79  m (range 10–1300  m) for adults, 
with females moving a median distance of 112 m (range 
10–1300  m) compared to 71  m (range 10–1300  m) for 
males. Only 5 adults (3 SY females, 1 SY male, and 1 ASY 
male) were recorded moving > 500  m between years. 
Yearly apparent survival, conditional on returning to the 
study area, was 55% (50–61 %) for adult birds.

The effect of climate ( β2 ) on natal dispersal was −0.41, 
with a 95% credible interval that did not include zero ( −
0.74–−0.13), indicating that nestlings were more likely to 
disperse towards cooler and wetter locations relative to 
available conditions surrounding the nest sites (Fig.  3). 
Natal dispersal distances were shortest for individu-
als born at the highest elevations. For these individuals, 
there were no cooler climates available within the study 
area. This is consistent with the fact that no nestlings 
were observed to move to the low elevation sites with 
warmer, drier climates (Fig. 4). In contrast, natal disper-
sal distances were greater, and more directional, for nest-
lings hatched in the warmer, drier conditions at lower 
elevations.

Adult dispersal was more restricted and less directional 
than natal dispersal. Average adult dispersal distance 
was 79 m, compared to 917 m for recaptured nestlings. 

The estimated effect of climate on adult dispersal ( β2 ) 
was 0.18 with a 95% credible interval including zero ( −
0.06–0.54). Consequently, adult dispersal kernels were 
much more compact and symmetric than natal dispersal 
kernels (Fig. 3).

Discussion
Trailing-edge range shifts can result from reduced vital 
rates or directional dispersal. Although both processes 
can cause local population declines, reduced survival and 
reproduction can lead to reductions in population-level 
fitness and the loss of genetic diversity. In contrast, direc-
tional dispersal can mitigate the effects of changing envi-
ronmental conditions by allowing individuals to track 
optimal conditions. Our results, coupled with previous 
findings on demography [41], suggest that directional 
natal dispersal away from warmer and drier climate con-
ditions may explain the local range shift towards higher 
elevations. Our study presents some of the first evidence 
of directional natal dispersal in a migratory species.

In a long-term study of female black-throated blue 
warbler demography, Lewis et  al. [41] found that popu-
lation declines were greater at the trailing edge of the 
range than at the range core. At both range positions, 
population density was highest, and trends were most 
stable, at higher elevations characterized by cooler and 
wetter climates. Because their study used non-spatial 
mark-recapture data at six independent sites, they were 
unable to study dispersal. However, consistent with our 
results, they found declining per-capita recruitment rates 
(declining ratio of SY birds on site) at the lowest elevation 

Fig. 3 Predicted dispersal kernels of black‑throated blue warblers at 4 theoretical nesting locations in the Nantahala National Forest, North Carolina, 
USA. Locations were chosen to represent dispersal patterns at 4 different climate conditions where black‑throated blue warblers are present. White 
circles represent origin of dispersal. Grid cell colors represent the probability of dispersing to a location from the origin. Climate contours are shown 
as grey lines
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trailing-edge study plot with the warmest and driest 
conditions.

Within our study, natal dispersal was more sensitive to 
climate and occurred over greater distances than adult 
dispersal. In contrast, adult black-throated blue war-
blers exhibited strong site fidelity between years as has 
been documented in the core of the breeding range [9, 
31], suggesting that natal dispersal will have more influ-
ence on range shifts than adult dispersal. Natal disper-
sal towards colder and wetter sites may only be possible 
when populations are below carrying capacity, as high 
conspecific abundance in the best habitat conditions may 
preclude young individuals from establishing territories 
[21]. The documented declines in this population [41] 
and the apparent infrequency of high elevation nestlings 
selecting lower elevation territories, suggest that this 
population is below carrying capacity and low elevation 
populations will continue to decline.

First year survival is very low for many passerines 
[42, 44], with apparent survival estimates as low as 5% 
for some species [63]. While our apparent survival esti-
mate of 10% for first-year birds is similar to estimates of 
neotropical migrants reported elsewhere [44], we were 

unable to separate long-distance dispersal from mortal-
ity. Our apparent survival estimates are therefore likely 
lower than actual survival. If these estimates represented 
true survival, the population would likely decline precipi-
tously. While previous work predicts this species will be 
locally extirpated from our lower elevation intensive plot 
by 2030 [41], abundance at high elevation sites is pre-
dicted to remain stable. These results suggest that direc-
tional natal dispersal of individuals born at warmer and 
drier sites is maintaining abundance at colder and wet-
ting locations.

The nestling return rates in our study area were sub-
stantially higher than those seen in New Hampshire 
in the core of the breeding range. Holmes et  al. [31] 
reported that only 22 (0.44 %) of >5000 nestlings were 
known to have returned to the range core between 1986 
and 2016. Of these returning birds, the closest return was 
300  m from the individual’s natal site, with most birds 
dispersing more than 500  m, including several disper-
sal events >2 km from their natal sites. In our study, we 
observed 24 nestlings returning to the study area, despite 
having approximately half the sample size of banded 
nestling black-throated blue warblers and 10 fewer years 

Fig. 4 Climate conditions at dispersal destinations (blue distributions) compared to available climate conditions (all climate conditions present 
in the study area, grey distribution) for dispersal events of black‑throated blue warblers banded in the Nantahala National Forest, North Carolina, 
USA. Conditions where black‑throated blues were first banded at any age (nestlings or adults) is shown in brown. Nestlings recaptured more 
than one year after hatching are excluded from the nestling destination distribution
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of data. The high return rate at our study is potentially 
attributable to the lack of suitable habitat at the trailing-
edge where the species is restricted to fragmented high 
elevation forests.

The availability of cold, high elevation sites in the study 
area appeared to influence natal dispersal outcomes. 
Individuals born at the highest elevations had no avail-
able colder climate to disperse into within our study area. 
Even though more than twice the number of nestlings 
were banded at the highest elevation plot compared to 
the lower elevation intensive plot, none of these indi-
viduals were ever observed establishing territories at the 
low elevation intensive plot. The lack of movement to 
the warmer climate at the lower elevation intensive site 
suggests a pattern of non-random natal dispersal, though 
more information on long-distance dispersal would help 
substantiate this hypothesis.

Movements to higher latitude mountains may not 
represent a significant barrier to black-throated blue 
warblers and other long-distance migrants that already 
annually migrate thousands of kilometers [67], but this 
theory is largely untested. Intraspecific competition or 
non-thermal abiotic conditions such as habitat quality 
can prevent individuals from tracking changing climate, 
even when population movements as a whole trend 
towards cooler locations [19, 39]. Although the young 
birds in our study showed flexibility in dispersal distance, 
it remains unclear if long-distance dispersal to frag-
mented patches of high quality habitat at higher latitudes 
is possible. Due to the logistical challenges of studying 
long-distance movements [34], we restricted our analy-
sis to birds that returned to the study area, but future 
research should attempt to understand the extent and 
direction of long-distance dispersal in trailing-edge pop-
ulations and its role in maintaining population viability 
under future climate conditions. Advanced monitoring 
techniques, such as MOTUS and satellite tags applied to 
first-year birds, may provide a powerful avenue for direct 
examination of long-distance dispersal.

Conclusions
For many species, trailing-edge populations act as reser-
voirs for genetic diversity [1, 24] which can confer higher 
resistance to environmental change [33, 60, 68]. Previ-
ous studies of climate change and dispersal predict an 
increase in dispersal distances under future climate con-
ditions and more frequent long-distance dispersal events 
[37, 66]. Our findings suggest that the negative effects of 
climate change on trailing-edge populations can be miti-
gated by directional natal dispersal, provided that suffi-
cient connectivity exists between high-quality habitat at 
the edge and core of the range.
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